
A Survey of Parallel Computing Architectures, Paradigms,

and Technologies

The purpose of this document is to compare available parallel computing techniques and their
impact on the performance. The document tries to explore the prospects that parallel computing
systems promise for increased speed of execution.

1 Parallel Computing Architectures

Parallel computers can be classified into two main categories ([7]):

• Single Instruction Multiple Data (SIMD): all the processing elements receive the same instruc-
tion broadcast from the control unit, but operate on different data sets from distinct data
streams.

• MIMD (multiple instruction / multiple data): In MIMD machines, the processors are connected
to the memory modules by a network.

SIMD architecture is perfectly suited for data parallel problems, as the data can be split into
many different independent pieces. Some examples of SIMD machines include Cray Y/MP and
IBM9000. The MIMD architecture is capable of running in true ”multi-instruction” mode, with every
processor doing something different. Some examples of MIMD machines are IBM-SP series, clusters
of workstations/PCs, Intel Paragon etc. The MIMD architecture is classified into shared memory
and distributed memory architectures based on the memory structure of the system. In shared
memory architecture, the same memory is accessible to multiple processors and synchronization is
achieved by controlling task’s reading from and writing to the shared memory. The advantage of
this type of architecture is the ease of programming. Since multiple processors have access to the
same memory, however, the scalability of the system is limited by the number of access pathways to
memory. To improve the performance, each processor can be provided with a local memory and the
global memory is shared among all the processors in the system. Depending on the speed of memory
accessing, shared memory computers can be classified into the Uniform Memory Access (UMA) or
Non-Uniform Memory Access (NUMA) computers. Some examples of shared memory computers
include IBM ES-9000 and SGI Power Challenge.

In a distributed memory parallel computer, each processor element has its own local memory
and synchronization is achieved by the communication between processors via an interconnection
network. The major concern in a distributed memory architecture is data decomposition, i.e., how
to distribute data among processors to minimize processor communication. Distributed memory
machines use message passing or distributed shared memory models. In message passing systems,
program tasks communicate by explicitly sending/receiving data packages to/from each other. The
process of sending/receiving data is specified and controlled by the application program via mes-
sage passing libraries (PVM, MPI) or languages (VPP-Fortran, Linda). The virtual shared memory

1



systems provide programmer with a shared memory programming model but the actual design of
the hardware and the network is distributed. A sophisticated memory mapping scheme ensures that
the entire distributed memory space can be uniquely represented as a single shared resource. The
actual communication model is at the lowest level and it uses message passing.

The other class of MIMD computers that are based on both shared and distributed memory
architectures is the Symmetric Multi-Processor (SMP) clusters. A typical SMP system in fact is a
cluster of a large group of nodes as a distributed memory computer. Each node in turn has a small
number of processors with shared memory.

Both the shared and distributed memory computers are constructed by connecting processors
and memory units using a variety of interconnection networks. In shared-memory systems, inter-
connection network is for the processors to communicate with the global memory. In distributed
system, interconnection network is for processors to communicate with each other. Static intercon-
nection networks consist of point-to-point communication links among processors that are typically
used in message-passing computers. In dynamic networks, communication links are connected to
one another dynamically by switching elements. Dynamic networks are typically used with shared
memory computers. Examples of static networks include completely connected, star, and ring and
dynamic network examples include crossbar, bus-based and multistage interconnection networks.

1.1 Shared Memory vs Distributed Memory

There have been a number of studies comparing the performance of parallel programs on shared
memory and distributed memory systems. Games and Lee [9] examined the tradeoff between parallel-
software development effort and the resulting processing performance for both type of systems for
applications in signal and digital image processing. They concluded that both programming ap-
proaches showed comparable tradeoffs between the ease of development and the level of performance
that can be achieved.

2 Parallel Programming Paradigms

There are a number of parallel programming paradigms:

• Functional Languages (dataflow): Functional languages express computation in terms of pure
functions and are amenable to parallel evaluation (Sisal). They require extra overhead in work
and storage.

• Data Parallel: Parallelism is not expressed as a set of processes whose interactions are man-
aged by the user, but rather as parallel operations on aggregate data structures (CMF, HPF,
HPC++)

• Parallelizing compilers: Usually loop based often with directives

• Shared Memory : multiple threads executing common pool of tasks (pthreads, OpenMP)

• Message Passing: processes communicate using send/receive (PVM, MPI)

• Remote Memory Access: Provides one-sided communications, (put/get), which store and fetch
data to or from memory of another processor. Like other shared memory constructs, remote
memory access must be used carefully to avoid corruption of shared data.

2



2.1 Message Passing Standards

There have been a number of efforts to develop and standardize an interface for parallel computing.
Foremost in these efforts have been the HPF, PVM [22], and MPI [8] activities. MPI is a portable
message passing standard that runs both on tightly coupled, massively parallel processors and on
networks of workstations. The motivation for developing MPI was to standardize the message passing
API rather than having different proprietary APIs.

PVM is a byproduct of a research project at Oak Ridge National Laboratory and the University
of Tennessee. The overall objective of PVM is to enable a heterogeneous collection of computers
to be used cooperatively for concurrent or parallel application. The PVM system is composed
of two parts. The first part is the system part which is handled through a daemon that resides
on all computers making up the virtual machine. The second part of the system is a library of
PVM interface routines. This library contains user-callable routines for message passing, spawning
processes, coordinating tasks, and modifying the virtual machine. PVM supports a mixture of
functional and data parallelism.

Kitowski et al [11] compared PVM and MPI performance for a short-range molecular dynamics
simulation problem and they found MPI to be more robust and efficient in comparison with PVM.
Their studies were conducted on HP Exemplar SPP1200 and SPP1600 computers, and Intel Paragon
multicomputer. Markus et al [18] presented a comparison of several MPI implementations on differ-
ent hardware platforms based on the performance of PDE solvers from the parallel ELLPACK PSE.
The performance of different MPI implementations were comparable and better than that of PVM
and other message passing libraries.

2.2 Shared Memory Standards

The early efforts for specifying parallelism was through the creation of concurrent processes using
UNIX fork-join constructs. This approach paved way to using lightweight POSIX threads (pthreads),
which are much more efficient. OpenMP [5] uses the fork-join model of parallel execution with
threads sharing variables. OpenMP simply provides the API to manage the lightweight threads.

Linda [4], introduced in the mid 1980’s, implements virtual shared memory (VSM) for super-
computers and workstation clusters. Linda provides an abstraction of a tuple space, a distributed
shared memory (DSM), that can be used by processes to communicate and synchronize despite the
lack of physical shared memory. Cray provides a shared memory access library called SHMEM that
uses the remote memory access paradigm. The protocol is available only on Cray MPP systems.

2.3 Beowulf Clusters and Shared Memory

The linux kernel provides a VFS-like interface to the virtual memory system and researches have
tried to exploit this feature to provide page-based network virtual memory or distributed shared
memory. Page-based DSMs use the virtual memory hardware of the processors and a software
enforced ownership and consistency policy to give the illusion of a memory region shared among
processors.

There have been many attempts to emulate shared memory in software on a distributed system,
but so far none have resulted in good performance. A group of researchers at Rice University
developed a DSM called TreadMarks [1]. It provides a set of facilities and code annotation tools
that enable the abstraction of a shared memory system. However, it provides support only for C
programming language. Lu et al [13] developed a new compiler that targets a software DSM that
can use OpenMP on NOW. They also compared the performance of TreadMarks, OpenMP, and MPI

3



on NOW for a number of different applications. MPI outperformed the shared memory protocols in
all cases.

2.4 Performance Comparison - message passing vs shared memory

There have been a number of studies on comparing the performances of message passing and shared
memory systems. Luecke and Lin [14] compared the performance of MPI and OpenMP programs on
SGI Origin 2000. The MPI implementations performed significantly better than the corresponding
OpenMP implementations. They used up to 128 processors in their experiments. Luo [17] presented
the comparison of performance of MPI and shared memory on three different shared memory plat-
forms: the DEC AlphaServer 8400/300, the SGI Power Challenge, and the HP-Convex Exemplar
SPP1600. The MPI implementation on the SGI Power Challenge and HP System was superior to
others, with the shared memory schemes performing slightly better than the MPI schemes on the
DEC system. They used vendor specified shared memory schemes in their studies.

Some studies have tried to exploit the shared memory architecture present in the SMP clusters by
using a hybrid MPI-OpenMP approach [20, 21]. Despite the perceived reduction in communication
time, the hybrid codes did not perform as well as the equivalent message passing code or shared
memory code and in some cases, the performance actually deteriorated. Chow and Hysom [6]
concluded that the use of hybrid techniques is not trivial, is highly application dependent, and
requires careful analysis of cache and memory utilization.

Luecke et al [15] studied the performance and scalability of SHMEM and MPI-2’s remote memory
access routines for different communication patterns on SGI Origin 2000 and a Cray T3E. They
reported that the SHMEM routines outperformed MPI-2’s routines for all the tests conducted and
SHMEM routines exhibited better scalability.

2.5 MLP - Multi Level Parallelism

Taft [23] presented a new computing technique for parallel computing called multi-level parallelism.
The development of this technique was motivated by new hardware designs that are closer to true
shared memory architectures. The inherent limitation with shared memory programming is the
overhead of memory latency and synchronizations. MLP tries to overcome these limitations by iden-
tifying multiple levels of parallelism in the code: coarse grained, task parallelism and fine grained,
data parallelism. All communication is through true shared memory references between indepen-
dent processes. They applied this technique to the CFD code OVERFLOW and reported linear,
sustained performance up to 512 processors with almost 3 fold improvement in MPI’s performance.
The technique has applicability to many CFD and other vector codes. The use of this technique
currently is limited to shared memory architectures and the extension to cluster environments is
under development.

2.6 Scalability

In the study conducted by Luecke and Lin [14], the scalability of MPI and OpenMP programs were
compared on SGI Origin 2000. They reported that MPI implementations scaled consistently better
than the corresponding OpenMP implementations. Luecke et al [16] also studied the scalability of
MPI on different systems, including an NT Cluster, a Myrinet Linux cluster, an Ethernet Linux
cluster, a Cray T3E-600, and a SGI Origin 2000. The scalability and performance of MPI programs
was found to be best on the SGI Origin 2000. Among the different clusters compared, the Ethernet
Linux cluster outperformed the other two.

4



Figure 1 compares the performance of a number of parallel systems for the atmospheric research
mesoscale model 5 (MM5) [19]. All the systems used MPI implementations. Timings for the Pitts-
burgh Supercomputer Center Terascale Computing System (PSC TCS) was done using straight-MPI
(MPI over shared memory for communication within nodes and using MPI-over Quadrics for com-
munication between nodes). They were able to achieve 105Gflops/s by using 512 processors. The
AlphaServerSC is an SMP system and the model was run on it using straight-MPI (similar to the
PSC TCS) and this system provided approximately 40Gflops/s with 512 processors. The Fujitsu
VPP5000 is a distributed-memory machine with vector processors. The model was run by using
Fujitsu’s implementation of MPI. The IBM SP WH2 timings provided approximately 25Gflops/s
with 256 processors. The HPTi ACL/667 is an Alpha Linux cluster at NOAA. The model was run
using MPI-over Myrinet. The Pentium-III ScaliMPI timings were conducted on 16 dual 800Mhz
Pentium-III nodes and using ScaMPI.

3 Parallel Program Design Issues

The design of a parallel algorithm can be viewed as consisting of four stages. The first stage consists
of decomposing the problem into evenly sized fine-grained tasks to maximize potential parallelism.
The decomposition can be done based on data (domain decomposition) or based on computation
(functional decomposition). The next step is to determine the communication pattern among tasks.
The tasks may need to be combined into coarser grained tasks, if necessary, to reduce communication
requirements. This step is called agglomeration. Finally, each task is assigned to a processor in
a manner that attempts to satisfy the competing goals of maximizing processor utilization and
minimizing communication costs.

Factors Affecting Performance
Load balancing: is used to distribute computations fairly across processors in order to obtain the
highest possible execution speed. Load balancing can be carried out statically or dynamically .
Concurrency: defines the work done simultaneously.
Overhead: represents the work not present in serial computation. Time spent in communication,
synchronization, and idling contributes to the overhead.
Coping with memory latency: use of caches, local memory, low-latency network, fast interface other
techniques such as prefetching, block transfer etc. are also employed.

3.1 Parallel Performance Modeling

The performance of a parallel program is a complex and multifaceted issue. The performance metrics
to measure the performance of a parallel program includes execution time, parallel efficiency, memory
requirements, throughput, latency, network throughput, portability, and scalability.

Scalability refers to the effectiveness with which parallel algorithm can utilize additional proces-
sors. Algorithm is scalable if its parallel efficiency can be maintained at constant value by increasing
problem size, as the number of processors grows.

Communication time is the time spent in sending and receiving messages. Time spent in sending
one message can be modeled by

Tmsg = ts + twL (1)

where ts is the startup time for message, tw is transfer time for word and L is the length of mes-
sage. The bandwidth of communication channel can be defined as 1/tw. The startup cost usually
dominates when sending many small messages and bandwidth dominates for large messages.

5



Figure 1: MM5 floating point performance on various platforms (Feb 20, 2002) [19]

6



3.2 Comparison of Interconnects

Bal et al [2] compared the performance of three different networks, Fast Ethernet, ATM, and Myrinet.
The latency on Myrinet was the lowest, followed by Fast Ethernet and ATM. The implementation of a
message passing system is based on the interconnect’s communication protocol. For example, a Fast
Ethernet or Gigabit Ethernet interconnect runs on a TCP/IP-based system. Systems based on Grand
Message (GM) and Virtual Interface Architecture (VIA) use Myrinet and Emulex, respectively. The
GM and VIA protocols are more efficient than TCP/IP as shown in Figures 2 and 3. Although the
figures indicate that the performance of Myrinet and Emulex are better, the study conducted by
Leng et al [12] concluded that the Gigabit ethernet provides a better performance to price ratio than
the other interconnects. With future reductions in the cost for ethernet interconnects, this ratio is
further expected to improve.

3.3 Cluster Design

Figure 4 shows the different design choices for building a beowulf cluster. The comparison of different
technologies were discussed in the earlier sections.

4 Conclusions

The following inferences can be made from the review of available parallel computing technologies:

• MPI has emerged as the leading message passing standard

• Emulating shared memory on distributed memory architectures has not so far resulted in good
performance

• MPI has emerged as the leading portable parallel computing standard

• Shared memory protocols can be optimized to provide better performance than MPI on shared
memory machines, but are highly application specific.

• Hybrid approaches to parallel programming have not been able to beat the performance of
pure message passing approaches

• Shared memory programming using MPI-2 is still in infancy

• New techniques such as MLP offer the prospect of achieving a greater performance than that
of MPI. The MLP technique is relatively new and its performance on cluster environments
needs to be investigated.

• Gigabit Ethernet interconnect provides the best performance/price ratio among the intercon-
nect choices

References

[1] C. Amza, A. L. Cox, S. Dwarkadsa, P. Keleher, H. Lu, R. Rajamony, W. Yu, and
W. Zwanenepoel. TreadMarks: Shared memory computing on networks of workstations. IEEE
Computer, 29(2):18–28, February 1996.

7



Figure 2: Network Technology Comparison (Latency) [12]

8



Figure 3: Network Technology Comparison (Bandwidth) [12]

9



Figure 4: Architectural Stack of a Beowulf Cluster

10



Table 1: Comparison of MPI vs shared memory programming models [3]

MPI Pthreads HPF OpenMP
Scalable Y N Y Y
Incremental N N N Y
Parallelization
Portable Y Y Y Y
Fortran Y N Y Y
binding
Performance Y N N Y
oriented
Data Parallelism Y Y Y Y

Table 2: A comparison of the major features of PVM and MPI [10]

PVM MPI
Virtual machine concept No such abstraction
Supports heterogeneous NOW and MPP Intended primarily for MPP, supports NOW.
Simple message passing Extensive messaging support
Communication topology unspecified Supports logical communication
PVM implementations interoperable MPI does not support interoperability
across host architecture boundaries
Portability over performance Performance over portability
Contains resource management, Primarily concerned with messaging
load balancing, process control
Programs in C, C++, or Fortran Interlanguage communication not supported
may freely intercommunicate
Robust fault tolerance Not supported

11



[2] H. Bal, R. Hofman, and K. Verstoep. A comparison of three high-speed networks for parallel
cluster computing. In D. K. Panda and C. B. Stunkel, editors, Lecture Notes in Computer
Science, volume 1199, pages 184–197. Springer-Verlag, 1997.

[3] OpenMP Architecture Review Board. OpenMP: A proposed industry standard API for shared
memory programming. http://www.openmp.org, October 1997.

[4] N. Carriero and D. Gelernter. How to Write Parallel Programs. MIT Press, 1990.

[5] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. McDonald. Parallel Program-
ming in OpenMP. Morgan Kaufmann, 2000.

[6] E. Chow and D. Hysom. Assessing performance of hybrid MPI/OpenMP programs on SMP
clusters. Technical Report UCRL-JC-143957, Lawrence Livermore National Laboratory, Liver-
more, CA, 2001.

[7] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. Van Der Vorst. Numerical Linear Algebra
for High Performance Computers. Society for Industrial and Applied Mathematics, 1998.

[8] MPI Forum. MPI: A message passing interface standard. International Journal of Supercom-
puter Application, 8(3/4):165–416, 1994.

[9] R. A. Games and P. T. Lee. Performance comparison of distributed and shared memory parallel
signal and image processing. Technical Report 98B0000085, Center for Integrated Intelligence
Systems, Bedford, MA, October 1998.

[10] G. A. Geist and J. A. Kohl. PVM and MPI: A comparison of features. Calculateurs Paralleles,
8(2), 1996.

[11] J. Kitowski, K. Boryczko, and J. Moscinski. Comparison of PVM and MPI performance in
short-range molecular dynamics simulation. In M. Bubak, J. Dongarra, and J. Wasneiwski, edi-
tors, Proceedings of 4th European PVM/MPI User’s Group Meeting, Lecture Notes in Computer
Science 1332, pages 11–16, Cracow, Poland, 1997.

[12] T. Leng, R. Ali, C. Stanton, and J. Hsieh. HPC cluster interconnects and message passing sys-
tems: From proprietary to commodity. In Dell Power Solutions - High Performance Computing,
volume 4, 2001.

[13] H. Lu, C. Hu, and W Zwanenepeol. OpenMP on networks of workstations. In Proceedings of
SC’98, pages 7–13, Orlando, FL, November 1998.

[14] G. R. Luecke and W. H. Lin. Scalability and performance of OpenMP and MPI on a 128
processor SGI Origin 2000. Journal of Performance Evaluation and Modeling of Computer
Systems, 2001. in print.

[15] G. R. Luecke, S. Spanoyannis, and M. Kraeva. The performance and scalability of SHMEM
and MPI-2 one-sided routines on a SGI Origin 2000 and Cray T3E-600. Iowa State University,
October 2001.

[16] G. R. Luecke, J. Yuan, S. Spanoyannis, and M. Kraeva. Performance and scalability of MPI
on PC clusters. Iowa State University, January 2000.

[17] Y. Luo. Shared memory vs message passing: the COMOPS benchmark experiment. Technical
Report CIC-19, Mail Stop B256, Los Alamos National Laboratory, 1997.

12



[18] S. Markus, S. B. Kim, K. Pantazapoulos, A. L. Ocken, E. N. Houstis, P. Wu, S. Weerawarana,
and D. Maharry. Performance comparison of MPI implementations using the parallel ellpack
pse. In Proceedings of the Second MPI Developer’s Conference, pages 162–169. IEEE Computer
Society Press, 1996.

[19] J. G. Michalakes. Penn State/NCAR Mesoscale Model 5 benchmark.
http://www.mmm.ucar.edu/mm5/mpp/cowbench/.

[20] D. J. Scales, K. Gharachorloo, and A. Aggrawal. Fine-grain software distributed shared memory
on SMP clusters, February 1998.

[21] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanassis, S. Parthasarathy, and
M. Scott. Cashmere-2L: Software coherent shared memory on a clustered remote-write net-
work. In Proceedings of the 16th ACM Symposium on Operating System Principles, October
1997.

[22] V. S. Sunderam. PVM: A framework for parallel distributed computing. Concurrency: Practice
and Experience, 2(4), 1990.

[23] J. R. Taft. Performance of the OVERFLOW-MLP CFD code on the NASA AMES 512
CPU Origin system. Technical Report NAS-00-005, NASA Ames Research Center, March
2000.

13


